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Abstract 

In practical applications of dynamical systems, it is often necessary to determine the 
number and the stability of the stationary states. The parametric respresentation method 
is a useful tool in such problems. Consider the two parameter families of functions: 
f ( x )  = u o + u l x  + g(x), where u o and u I are the parameters. We are interested in the 
number of zeros as well as in the stability. We want to determine the "stable region" on 
the parameter plane, where the real parts of the roots of f are negative. The D-curve 
(along which the discriminant of f is zero) helps us. We applied the method to the cases 
of cubic and quartic equation, giving pictorial meaning to the root structure. In this 
respect, the R-curves and the l-curves (along which the sum or difference, respectively, 
of two zeros is constant) also have a significance. Using these concepts, we established 
a relation between the ( n -  1)th Routh-Hurwitz condition and the Hopf bifurcation. 

1. Introduction 

The system of autonomous differential equations 

fc = F(u ;x )  x E IR n, u E N m (1) 

is used in wide areas of natural sciences. Here, the system has n degrees of  freedom, 
xi are the state variables (i = 1 . . . . .  n), and uj are the control parameters ( j  = 1 . . . . .  m). 

Changing the values of the control parameters uj, the qualitative character of 
the solutions often remains unchanged, and changes only at certain exceptional 
values of uj. The qualitative change of solutions is called bifurcation, and the 
parameter values at which the bifurcations take place are the bifurcation points. If 
we have two control parameters (m = 2), the set of bifurcation points constitutes a 
curve in the generic case: we will use the term bifurcation diagram. 

The bifurcation diagram divides the parameter plane (Ul, u2) into separate 
regions; the qualitative behaviour of the solutions is the same within any region. 

One of the most important bifurcation problems is the determination of the 
number of equilibria (stationary points). This number changes only at the singularity 
set defined by the system 

F(u; x) = 0 0---F-F (u; x) = 0. (2) 
0x 
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In practice, the determination of the bifurcation diagram is not an easy task. 
For example, the elimination of the state variables xi from eq. (2), in principle, 
leads to a relation between the control parameters, but this elimination is 
often very tiresome, and even if the elimination was feasible, the shape of 
the bifurcation diagram could not be seen in this way in the vast majority 
of cases. 

The method of parametric representation provides us with the equation 
of the bifurcation diagram in a parametric form. Here, one of the state 
variables serves as a parameter, and the equation of the bifurcation diagram takes 
the form 

ul = u l ( x ) ,  u2 = u2(x).  (3) 

This method was formerly used for special chemical problems ([8, 12, 13]; the last 
work lists further references). The term "parametric representation method" was 
introduced by Gilmore [9]. Also, we refer to other relevant works which contain 
systematic approaches and general results [1-3,5,  10, 11]. 

Local investigation of the system (1) requires study of the solutions of "algebraic" 
(i.e. no t  differential) equations in dependence on the control parameters. These 
equations may arise in at least two different ways: 

(a) Put zero for the left-hand side of (1) and eliminate the state variables except 
one; in this way, we obtain an equation which determines the location of the 
equilibria. 

(b) Calculate the characteristic polynomial at a certain equilibrium; in this way, 
we obtain an equation which determines the character of the equilibrium in 
question. 

In this paper, we investigate the solutions of the equation 

f ( x )  - Uo + u l x  + g ( x )  = O, (4) 

where u0 and ul are the control parameters. Farkas et al. [6] investigated this 
problem in detail, but that work focused on equations determining equilibria. Here, 
we pay special attention to type (b) (i.e. when (4) is a characteristic equation), and 
consequently, we will not only be interested in real, but also in complex solutions. 
Furthermore, we are interested in the problems of stability: we want to determine 
the "stable" region in the plane (u0, ul) where 

Re(x) < 0 (5) 

is valid for all  solutions of (4). 
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2. The discriminant curve (D-curve) 

DEFINITION 

To eq. (4) we assign its discriminant curve ( D - c u r v e  for short) given by the 
following parametric equations: 

Uo = Uo(X) = x g "(x) - g (x ) ,  

ul = u l ( x )  = - g" (x)  . 
(6) 

For the points of the D-curve, eq. (2) has a multiple solution, and just this 
multiple solution x is the parameter along the D-curve. Substituting (6) into (4), we 
see that 

f ( x )  = O, f ' ( x )  = 0. (7) 

In other words, the D-curve defined by (6) is the singularity set of the function f 
[10]. For the case where g is a polynomial, the D-curve is the locus of the parameter- 
pairs (u0, ul) for which the discriminant D of eq. (4) is zero (see the appendix). 

From the D-curve, we can easily gain all the information about the real roots 
of (4). Indeed, disregarding some exceptional cases, the following statements were 
proved [6]: 

(i) The number of real roots changes only if we cross the D-curve and, therefore, 
this curve divides the parameter plane into regions with different numbers of 
real roots. 

(ii) The straight line tangential to the D-curve at the point assigned to the value 
x is the locus of the parameters (u0, ui) for which x is a solution of (4). 
Therefore, all the real solutions belonging to any given parameter-pair (Uo, ul) 
can be obtained by drawing tangential straight lines to the D-curve from the 
given point. 

(iii) The slope of the D-curve at the point (Uo(X), Ul(X)) is: 

duo /du l  = - x .  (8) 

(iv) The curvature of the D-curve can be given by the relation 

d2uo/du  2 = 1 /g" (x ) .  (9) 

The D-curve may have some peculiar points, cusps and self-crossing points. 

C u s p s  

These are determined by the equations: 

f ( x )  = o, f ' ( x )  = 0 ,  f " ( x )  = o. (10) 
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This means that the cusp points are the points of  the D-curve for which 

g"(x)  = 0. (1 1) 

At a cusp, the D-curve reverses its direction and changes its curvature. In the inner 
part of  the cusp, the number of real roots is greater than outside. 

Self-crossing points 

It may occur that the same point belongs to two different values o f x  by (6). 
In this case, the D-curve intersects itself. To the self-crossing point (u0, u~), the 
equation f ( x )  = 0 has at least two multiple solutions. 

It is yet an open problem how to give the self-crossing points in a simple way 
for the general case. 

The self-crossing points have special significance with respect to complex 
roots. Namely,  for some complex value x, the formulas in (6) may produce real u0 
and ul. The points (Uo, ul) given in this way (that is, generated by complex x 's)  
constitute a set which we will call the complex supplement of  the D-curve. The self- 
crossing points as well as the points of the complex supplement are discrete points 
in the generic case. In the case of polynomial f ( x ) ,  the complex solutions occur in 
conjugate pairs. Hence, the self-crossing points and the points of  the complex 
supplement can be defined by the same definition, namely, the requirement for the 
existence of two multiple roots. In section 6, we will give explicit formulas and 
show that the complex supplement is a continuation of the self-crossing point for 
quartic equations. 

3. The R-curves and I-curves 

DEFINITION 

To eq. (4), we define the family of R-curves and I-curves by the formulas 
in parametric form: 

Uo = - g ( R  + I) + [g(R + ! ) -  g ( R -  I)](R + 1)/21, 
(12) 

ul = - [g(R + I) - g(R - 1)]/21. 

For an R-curve, R is constant and I is the parameter of the curve, while for an 
I-curve, I is constant and R is the parameter of the curve. 

Remarks 

(i) Notice that the D-curve can be considered as a special I-curve, namely 
the one assigned to the value I = 0. (Strictly speaking, for I = 0 the r.h.s, of  (12) 
is not defined, but we can consider the limit case I --+ 0.) 
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(ii) The point (Uo, ul) given by (12) is the unique point for which R + I and 
R - I are the solutions of  the equation f ( x )  = 0 provided that I ~ 0. 

(iii) If I is purely imaginary (I = iy, y ~ ~ ) ,  then the point (u0, Ul) is the 
unique point to which the complex number R + iy (and also R -  iy, of  course) is 
a solution. (Compare: the locus of  the points in the parameter plane for which a 
certain real value x is a solution is a straight line.) 

(iv) An R-curve is the locus of  the points for which the sum of two solutions 
is constant (this sum if R). 

(v) An I-curve is the locus of  the points for which the difference of  two 
solutions is constant (this difference is I). 

(vi) For complex values R and I, the relations in (12) produce real Uo and 
real ul only in some exceptional cases. Besides the trivial case, when R and I are 
both real, there is another typical case for real Uo, ul: the case of  a conjugate pair 
of  complex solutions, i.e. when I = iy (y  ~ IR). 

(vii) Hopf  bifurcation can occur only if the characteristic polynomial has a 
purely imaginary pair of  roots. Therefore, the Hopf bifurcation diagram is a special 
R-curve: R = 0 and I = iy (y  ~ IR). Next, we discuss this case in detail. 

4. The case R = 0: Hopf bifurcation 

This special case can be treated in a simple way. Let us consider the points 
of  the plane (u0, ul) for which the sum of  two solutions is zero or, in other words, 
together with a solution I, its negative - I  is also a solution: 

f ( l )  = uo + u l l  + g( l )  = O, 

f ( - l )  = Uo-  u l l  + g ( - l )  = O. 
(13) 

By addition and subtraction of  these equations, we obtain the desired curve in 
parametric form: 

Uo = - [ g ( l )  + g( -1 )] /21 ,  

ul = - [g(l) - g ( - l ) ] / 2 I .  
(14) 

Note that on the r.h.s, there are even functions of  I. We can consider (14) as a 
parametric expression for a certain curve H*, and we can use 12 as the parameter 
of  the curve given by (14). This curve consists of two parts: 

(a) Real part: 12 > 0. Along this part, the sum of two real solutions is zero. 

(b) Imaginary part: 12< 0. Along this part, the sum of two purely imaginary 
solutions is zero. We will call this part the H-curve  or Hopf  curve, because 
Hopf  bifurcation can occur only if we cross this part of  the curve. 
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These two parts of the curve organically join at the point belonging 
to I = 0 .  

These results can be used in stability analysis. A system may lose its stability 
in two typical ways: 

(1) A single real solution changes its sign. In our case, this may occur along the 
line Uo = 0. 

(2) The real part of a complex conjugate pair of solutions changes its sign. This 
bifurcation (Hopf bifurcation) takes place along the H-curve. 

In stability investigations, the Routh-Hurwitz  criterion is widely used. The 
following theorem establishes a relation between the Routh-Hurwitz  criterion and 
the above results. 

THEOREM 

The system of eqs. (13) has a solution 1 if and only if 

A n _ l  = 0, 

where 
proof 

as the 

(15) 

An_ 1 i s the  (n - 1)th principal minor of the Routh-Hurwitz  matrix. (See the 
and the details in the appendix.) 

This theorem means that the Hopf bifurcation problem is essentially the same 
problem of the ( n -  1)th Routh-Hurwitz  condition. 

5. Cubic equations 

The parametric representation method gives us a simple pictorial description 
for the solutions of the cubic equation 

f ( x )  = U 0 + UlX + U2 x2 + X 3 = O. (16) 

Consider the solutions as functions of Uo and ul; u2 is assumed to be a positive 
constant. 

From (6), the parametric equations of the D-curve are: 

Uo = Uo(X) = x2(2x + u2), 

ul = ul(x)  = - x ( 3 x  + 2u2). 
(17) 

Using these formulas with the general results given in section 2, one can readily 
see the qualitative shape of the D-curve (fig. 1). Both Uo(X) and ul(x)  have a 
maximum at x = - u 2 / 3 ,  where the D-curve has a cusp. 
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The variable x in (17) is the parameter of the curve. We characterize the 
points of  the D-curve by the values of this parameter x. The arrow indicates the 
direction of increasing x. When we speak about "point x~', we mean the point 
(Uo(X), ul(x))!. 

The D-curve divides the plane (u0, ul) into two parts: an "inside" part and an 
"outside" part (related to the cusp). 

The straight line tangential to the D-curve at xl intersects the D-curve at the 
point x =  - (u2+x~)/2 .  To see this, we recall that at the intersection point x, 
the cubic equation has a double solution x and also has a solution xl, and 
consequently x + x + x~ = -u2. 

To determine the solutions belonging to a certain point of  the parameter plane, 
we can use straight lines tangential to the D-curve. There are two typical situations: 

(I) The point P = (u0, ul) is the "inside" (fig. 2). Then we can draw three 
tangential lines, and we obtain three real solutions at the tangent points x~, x2, x3. It 
is interesting to note that the intersection point (yi) with the D-curve is just the mean 
value of the two other corresponding solutions. 

(II) The point P = (u0, ul) is "outside" (fig. 2). In this case, we can draw only 
one tangential to the D-curve. The tangent point x~ is just the unique real solution. 
The tangential straight line intersects the D-curve at a certain value x = R. This value 
is just the real part of  the other two solutions x2 and x3. In order to give a pictorial 
meaning to the imaginary part of  the complex solutions, we remark that the tangential 
straight line in question is the R-curve belonging to the value R above. The parametric 
equation of the R-curves is given in (12). The second equation of (12) takes the form 

U 1= -(2u2R+3R 2+12 ) (18) 

in the case of cubic eq. (16). Therefore, this equation gives ul as a function of  I 
along the tangential straight line. At the intersection point (of the D-curve and the 
tangential line, fig. 2), 1 = 0; therefore, 
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Fig. 2. Graphic determination of the solutions of a cubic equation. 
Case (I): three real solutions, case (II): one real solution. 

U]o = - (2u2  R + 3R2), 

where ul0 is the ul-coordinate of  the intersection point. Hence, 

I = +~t-~l - ul0. (19) 

Now let us turn to the problem of  stability. The H*-curve is given from (14): 

UO = --U212, U 1 = - - 1 2 .  (20) 

This is a straight line going through the origin and tangent to the D-curve at the 
point - u 2  (fig. 3). I 2 can be considered the parameter of  the H*-curve. 12 = 0 at the 
origin and I2< 0 in the first quadrant. The semi-infinite straight line 

{(Uo, Ul)luo = -u212; Ul = _•2; i 2 < 0} 

is the Hopf curve. Above this curve the real part of  the complex solutions is 
negative. According to fig. 3, we can recognize the following regions with respect 
to the sign of  the real part of  the solutions: 
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I. Outside region 

Region 

I/1. above H-curve, right 

I/2. above H-curve, left 

1/3. below H-curve, right 

Sign of  Xl Sign of  Rex2 

+ 

- -  + 

II. Inside region Sign of  

Region xl x2 x3 

II/1. Uo < 0 - - + 

I1/2. Uo > 0 and ul < 0 - + + 

II/3. u 0 > 0  and u 1 > 0  - - - 

In this way, we obtain the stable region of  the cubic equation. It is in the first 
quadrant bordered by the axis ul and the H-curve Uo = ul u2 that is the union of  the 
regions I/1 and II/3 (fig. 4). 

Ul 
s t a b t e  

u o 

Fig. 4. 
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6. Quartic equations 

The quartic equation in general form is: 

a0 + al y + a2y2+  a 3 y  3 + y 4 =  0. 

With the transformation y = a3x, the equation takes the form: 

U O+ UlX + U2 X2 +X 3 +X 4= O. 

This transformation does not mean a loss of generality (provided that a3 ~: 0), and 
has a practical advantage compared to the more often used transformation which 
cancels the cubic term, namely, for this transformation the relations between the 
original parameters a i and the new ones ui are very simple. We define the polynomials 
g and f by 

g ( x )  = u2x 2 + x 3 + x 4, 
(21) 

f ( x )  = Uo + u l x  + U2X 2 + x 3 + X 4. 

First, we shall study the D-curve. We can obtain the parametric form of  the 
D-curve from (6): 

Uo = x2(u2 + 2x + 3x2), ul = -X(2U2 + 3X + 4X2). 

The cusp points are determined by (11), g " ( x )  = 0, in our case: 

u 2 + 3 c + 6 c  2= O, 

where c is the parameter of  the cusp point. Thus, c~,2 = ( - 3  + ~/3d)/12, where 
d = ",/(3 - 8u2). (We can see that in the case of  the quartic equation, the D-curve has 
two cusp points or it has no cusp point.) 

Now, let us study the self-crossing point, the singularity point of  the third 
order (the case of  a fourfold root) and the complex supplementary point. The 
common feature of  these points is that two double roots exist for them (the case 
of  a fourfold root can be considered as a special degenerate case). For this reason, 
we shall use the term TDR-point (Two Double Root) for all of  them. The TDR- 
points are characterized by the formula: 

f ( x )  = (x  - Xl)2(X - X2) 2. (22) 

If xl, x2 • ]R and xl ~ x2, then the (U0(X1), Ul(Xl) ) point is a self-crossing point. If  
Xl = x2 ~ ~., then the (Uo(Xl), u l ( x l ) )  point is a fourfold root. If xl is nonreal, then 
xl = x2 and the (Uo(Xl), ul(xl)) point is the supplementary point. From (21) and 
(22), we can obtain the following equations: 
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Uo = x2 x 2, 

U 1 = --2X1X2(X 1 -I- X2) , 

//2 = (Xl + X2) 2 + 2X1X2, 

1 = - 2  ( x  1 + x 2 ) 

for the parameters of  the TDR-points. These equations yield the parameters of  the 
TDR-points: xl,2 = ( -  1 :t: d)/4 (d is defined above) and the coordinates of  the TDR- 
points: 

, 4 , ,  u; 
= L =8 ) Ul - - - -  8 

Thus, if  3 > 8u 2, then (u~, u~) is a self-crossing point: 

if 3 = 8u 2, then at (u o, u 1 ) there is a fourfold root; and 

if 3 < 8u 2, then (u~, u~) is a complex supplementary point. 

In these three cases, the D-curve is shown in fig. 5. 

3 
u2 <-G 

* * )  

.,,,~ U° 

3 
u 2 = y  

[Uo,Ul ) 

Fig. 5. " E a r - e y e  transition": the triangular region ("ear") - the vertices 
of which are the two cusps and the self-crossing point - collapses to a 
point (fourfold root) when 3 = 8u 2, and then it continues itself as a 
complex supplementary point ("eye") inside the parabolic-like region. 

From eqs. (23), we can see that the points of  the set {(u0, ul) ~ IRE: u0 = u 2} 
are the TDR-points on the parameter plane. We can consider this set as a curve 
parameterized by u2. 

= , U 1 -- 
2 8 2 8 

is the parametric form of the curve of  the TDR-points. Thus, the curve of  the TDR- 
points (TDR-curve) is a parabola on the parameter plane, with the equation u0 = u 2. 



334 tt. Farkas, P.L. Simon, The parametric representation method 

If u2 < 3/8, then the points of  the curve belonging to this parameter are self-crossing 
points, if u2 = 3/8, then the point of the curve belonging to this parameter is a 
fourfold root, and if u2 > 3/8, then the points of  the curve belonging to this parameter 
are the complex supplementary points of  the D-curves. 

Now we shall investigate the curve of  the cusp points (C-curve). In a cusp 
point there is a triple root, c denotes this root, and the fourth root is - 1  - 3c. Thus, 
in a cusp point 

f (x )  = ( x -  c)3(x + 1 + 3c). (24) 
From this equation, we can obtain the parametric form of  the C-curve with the 
parameter c: 

U 0 = - -C3(3C + 1),  U 1 = C2(8C + 3). 

With the parameter u2, the expression is more complicated. We can draw the C- 
curve: it has two cusp points at the parameters c = 0 and c = - 1/4; thse points are 
the intersections with the TDR-curve. Figure 6 represents the C-curve and the TDR- 

~.T. DR-curve 

u 0 

Fig. 6. 

curve. The C-curve is parameterized by c, the TDR-curve is parameterized by u2. 
From (24), u 2 = - 3 c ( 2 c +  1); this is the connection between the parameters 

u2 and c. 
Using the notations in fig. 6, we briefly describe the motion of  the TDR-point  

and the corresponding cusps. 
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(i) u2:-,,~ + 0. The TDR point moves from infinity to To. To each value u2, 
there belong two values of c, and the corresponding cusps move from infinity 
(c = - ~ )  to Co (c = -1 /2) ,  and from infinity (c = +,,~) to the origin O (c = 0). 

(ii) u2:0 + 3/8. The TDR-point moves from To to F. The corresponding cusps 
move from Co to F (c = - 1 / 4 )  and from O to F, respectively. 

(iii) u2 : -3 /8  + + ~ .  The TDR-point moves from F to infinity. Cusp points do not 
exist in this case. 

Finally, we shall study the H*-curve (R = 0). From (14), the parametric form 
of this curve is: 

U 0 = --//212 - -  14, /21 = - I  2. 

The parameter of  the curve is 12 . From these formulas, we obtain the equation of  
the curve: 

U 0 = U1(U 2 -  Ul). 

Figure 7 represents this parabola. In the points of  the parabola, f ( l ) = f ( - l ) =  0. 
That part of  the parabola for which 12 < 0 is the H-curve. 

u 2" 

U1 

-CUFV@ 

12 <0 

12=0 Uo 

Fig. 7. The H'-curve. 

Remark 

The case when I is a complex number with a nonzero real part and a nonzero 
imaginary part ( I  2 is nonreal) occurs only in the case a3 = 0. If a3 = 0, then 
the H*-curve is the al = 0 straight line, which consists of  two parts. The 
{(ao, 0 ) : a o <  a2/4} half-line is the real part of  the H*-curve (I 2 is real), and the 
{(ao, O) : ao > a2/4} half-line is the nonreal part of  the H*-curve (12 is nonreal). We 
can see the H*-curve in the case a3 = 0 in fig. 8. 
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real  

ali 

H* nonrea[ 

a~ ao 
4 

Fig, 8. 

Appendix 

In this appendix, we recall some algebraic terms and results [4, 14] concerning 
the roots of polynomials as well as the proof of the theorem. 

Let f and g be polynomials: 

n t n  

f ( x )  = ~_~ ai xi, g(x)  = ~.~ bi xi. (A. 1) 
i=0 i=0 

The resultant of the polynomials f and g is the determinant 

R ( f  ,g) = 

a n 

0 a n 

0 

bm 

o 

0 a n 

b o 0 

bo 

o am 

a 0 

0 

0 

a o 0 

0 

0 

ao 

0 

0 

bo 

(A.2)  

The necessary and sufficient condition for the existence of a common root (that is, 
for the two polynomials f and g not to be relatively prime) is: 

R(f ,  g) = 0. 

The discriminant of the polynomial f is defined as: 

D ( f )  (_1).(n_1)/2 1 = - - R ( U , U ' ) ,  (A.3)  
an 
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where f denotes the derivative. The polynomial f has a multiple root if and only 
if  the discriminant is zero. 

THE ROUTH-HURWITZ CRITERION 

The polynomial f is stable (that is, the real part of  all its roots is negative) 
if  and only if Ai > 0 for i = 1, 2 . . . . .  n. Here, Ai are the ith principal minors of  the 
Rou th -Hurwi t z  matrix 

an-1 an-3 

~ - 2  

(A.4) 
a2 ao 0 

a 3 a 1 0 

a4 a2 ao 

Here it is assumed that an > 0. In other words, the polynomial f is stable if and only 

(RH1) 

(RH2)  

( R H n - 1 )  

(RHn) 

if  the following Rou th -Hurwi t z  conditions are fulfilled: 

A 1 = an_ 1 > O, 

A 2 = an_lan_ 2 - anan_ 3 > O, 

An_ 1 > O, 

A n = a o A n _  1 > 0 .  

Now let us assume that we are in the stable region of  the coefficient space 
(ao, al . . . . .  an_ 1), that is, all the conditions (RH1 - R H n )  are fulfilled. Varying the 
coefficients, there are two typical situations for the loss of  stability. One is when 
a single real root changes its sign (from - to +); this occurs when ao = 0. The 
other typical situation occurs when the real part of  a conjugate pair o f  complex roots 
changes its sign (from - to +). In the first case An = 0, and we shall show that in 
the second case An_ 1 = 0, and this is the case when Hopf  bifurcation takes place. 

Now we formulate the theorem in another, equivalent form. 

THEOREM 

Let us assume that ao ~: 0. Then, An _ 1 = 0 if and only if  there exists I ~ C 
for which I and - I  are roots o f  the polynomial f. 
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P r o o f  

Let I and - I  be roots of fi that is, 

f ( l )  = O, f ( - l )  = O. (A.5) 

Summing and subtracting these equations, we obtain an equivalent system of equations: 

f ( l )  + f ( - l )  = O, f ( 1 )  - f ( - I )  = O. 

These equations can be expressed in the forms: 

ao + a212 + . . .  = O, a I + a312 + . . . .  0. 

(A.6) 

(A.7) 

This means that the even and odd parts are separately zero. Recalling that two 
algebraic equations can have a common solution if and only if the resultant is zero, 
we obtain the following necessary and sufficient condition 

R - + ( f  , f  ) =  

al a3 a5 

0 a 1 a, 3 

ao ~ a4 

0 a 2 a 4 

a5 

0 

0 

Rearranging the rows of the determinant, we obtain 

0 

0 

= 0 .  (A. 8) 

R ( f - , f  + ) = 

al a 3 

ao a 2 

0 a 1 

0 a o 

0 

a5 

a4 

a3 a5 

a2 a4 

0 

0 

0 
=0 .  

0 

an 

It is obvious that this is just the ( n -  1)th Routh-Hurwitz condition: 

An_ I =0.  

This proves the theorem. 

(RHn- 1) 

[ ]  

Now we mention here another criterion of stability of polynomials with 
positive coefficients. (Obviously, if the polynomial is stable and am > 0, then ai > 0 

for all i.) 
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THE L I E N N A R D - C H I P A R D  CRITERION [l 5] 

The polynomial f is stable if and only if ai > 0 for i = 0, 1 . . . . .  n, and 
An_ 1 > 0, An_ 3 > 0, An_5>  0 . . . . .  

We apply this criterion for the cases n = 3, 4, 5 and restrict ourselves to 
positive coefficients (ai  > O, i = O, 1 . . . . .  n) .  

For cubic polynomials,  the only condition of  stability is A 2 > 0. In the case 
of  the quartic equation, another condition is also relevant: A3 > 0. In the case of  the 
quintic equation, the relevant conditions are A2 > 0 and A4 > 0. 

These results help us to reveal the location of  the stability region of  the 
polynomial f. This region is in the positive orthant of  the space of  the coefficients 
a0, al . . . . .  a,,. In the case of  the quartic equation, the stability region is bordered 
by the surface A 3 = 0. In the case of  the quintic equation, the set defined by the 
condition a i > 0 ( i  = 0 . . . . .  5 )  and ,5 4 > 0 is not connected; one of  its components 
(in which A 2 > 0)  is identical with the stable domain. 
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